The Arabidopsis TRM1-TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes.

نویسندگان

  • Stéphanie Drevensek
  • Magali Goussot
  • Yann Duroc
  • Anna Christodoulidou
  • Sylvie Steyaert
  • Estelle Schaefer
  • Evelyne Duvernois
  • Olivier Grandjean
  • Marylin Vantard
  • David Bouchez
  • Martine Pastuglia
چکیده

Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The function of TONNEAU1 in moss reveals ancient mechanisms of division plane specification and cell elongation in land plants.

The preprophase band (PPB) is a transient ring of microtubules that forms before mitosis in land plants, and delineates the cytokinetic division plane established at telophase. It is one of the few derived traits specific to embryophytes, in which it is involved in the spatial control of cell division. Here we show that loss of function of Physcomitrella patens PpTON1 strongly affects developme...

متن کامل

Fluctuation Analysis of Centrosomes Reveals a Cortical Function of Kinesin-1.

The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. D...

متن کامل

Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana.

The nuclear envelope in plant cells has long been known to be a microtubule organizing center (MTOC), but its influence on microtubule organization in the cell cortex has been unclear. Here we show that nuclear MTOC activity favors the formation of longitudinal cortical microtubule (CMT) arrays. We used green fluorescent protein (GFP)-tagged gamma tubulin-complex protein 2 (GCP2) to identify nu...

متن کامل

Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis.

In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spin...

متن کامل

GCP-WD Mediates γ-TuRC Recruitment and the Geometry of Microtubule Nucleation in Interphase Arrays of Arabidopsis

Many differentiated animal cells, and all higher plant cells, build interphase microtubule arrays of specific architectures without benefit of a central organizer, such as a centrosome, to control the location and geometry of microtubule nucleation. These acentrosomal arrays support essential cell functions such as morphogenesis, but the mechanisms by which the new microtubules are positioned a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2012